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Abstract: In multidimensional datasets concurrent accesses to
data via indexing structures introduce the problem protecting
ranges specified in the retrieval from phantom insertions and
deletions. This paper proposes a novel approach for
concurrency in multidimensional datasets using Advanced
Indexing Technique like generalized search tree, R tree and its
variants, constitutes an efficient and sound concurrency access
model for multidimensional databases and it supports efficient
operations with serializable, isolation, consistency and
deadlock free.

Index terms: Concurrency Control, Locking Management,
Phantom Problem.

1. INTRODUCTION:

Over the last decade (1988-98), the R tree has emerged as
one of the most robust multidimensional access methods.
However, before the R tree can be integrated as an access
method to a commercial strength database management
system, efficient techniques to provide transactional access
to data via R trees need to be developed. Concurrent access
to data through a multidimensional data structure
introduces the problem of protecting ranges specified in the
retrieval from phantom insertions and deletions (the
phantom problem). Existing approaches to phantom
protection in B trees (namely, key range locking) cannot be
applied to multidimensional data structures since they rely
on a total order over the key space on which the B tree is
designed. The paper presents a dynamic granular locking
approach to phantom protection in R trees. To the best of
our knowledge, the paper provides the first solution to the
phantom problem in multidimensional access methods
based on granular locking.

The phantom problem is defined as follows (from the
ANSI/ISO SQL-specifications Transaction T1 reads a set
of data items satisfying some <search condition>.
Transaction T2 then creates data items that satisfy T1’s
<search condition> and commits. If T1 then repeats its
scan with the same <search condition>, it gets a set of data
items (known as “phantoms™) different from the first read.
Phantoms must be prevented to guarantee serializable
execution. Object level locking does not prevent phantoms
since even if all objects currently in the database that
satisfy the search predicate are locked, concurrent
insertions into the search range cannot be prevented.

1.1 Modes of lock: Let me go ahead in explaining you tﬁ

various modes available with a typical table as above:

Modes of

Lock Comment

The next operation we can think of is to do an
DML operation (Insert / Update / Delete),
This lock ensures that two people do not do
the modification on the same data at the same
time.

Exclusive

This lock mode is used to mark an

Update object for the update operation.

This mode establishes an locking tree
mechanism wherein it can include an intent
shared, intent exclusive and share with
exclusive locks. This mode does stress the
point that the data can be updated at any
time. For example, this happens when you
take a cursor for update.

Intent

This lock is taken when we do an DDL
operation where the integrity of the database
schema needs to be verified. This can
include from creating a table, procedure,
alter a column width, adding an column etc.

Schema

Bulk
Update

This is taken when we do an Bulk-Upload of
data or Bulk Copying of data into the system.

Modes of

Comment
Lock
This is a typical mode of operation for Select
Shared statements where the resource can be shared

by multiple users. Since you are just reading
the data you can share the resource.

1.2. Approaches to Phantom Protection:

There are two general strategies to solve the phantom
problem, namely predicate locking and its engineering
approximation, granular locking. In predicate locking,
transactions acquire locks on predicates rather than
individual objects. Although predicate locking is a
complete solution to the phantom problem, the cost of
setting and clearing predicate locks can be high since (1)
the predicates can be complex and hence checking for
predicate satisfiability can be costly and (2) even if
predicate satisfiability can be checked in constant time, the
complexity of acquiring a predicate lock is proportional in
the number of concurrent transactions which is an order of
magnitude costlier compared to acquiring object locks that
can be set and released in constant time [9]. In contrast, in
granular locking, the predicate space is divided into a set of
lockable resource granules. Transactions acquire locks on
granules instead of on predicates. The locking protocol
guarantees that if two transactions request conflicting mode
locks on predicates p and p0 such that p~p0 is satisfiable,
hen the two transactions will request conflicting locks on
A least one granule in common. Granular locks can be set
and released as efficiently as object locks. For this reasons,
all existing commercial DBMSs use granular locking in
preference to predicate locking.

An example of the granular locking approach is the
multigranularity locking protocol (MGL) [12]. MGL
exploits additional lock modes called intention mode locks
which represent the intention to set locks at finer
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granularity (see Table 1). Application of MGL to the key
space associated with a B-tree is referred to as key range
locking (KRL) [12, 13]. KRL cannot be applied for
phantom protection in multidimensional data structures
since it relies on the total order over the underlying objects
based on their key values which do not exist for
multidimensional data. Imposing an artificial total order
(say a Z-order [14]) over multidimensional data to adapt
KRL would result in a scheme with low concurrency and
high lock overhead since protecting a multidimensional
region query from phantom insertions and deletions will
require accessing and locking objects which may not be in
the region specified by the query (since an object will be
accessed as long as it is within the upper and the lower
bounds in the region according to the superimposed total
order). It would severely limit the usefulness of the
multidimensional AM, essentially reducing it to a 1-d AM
with the dimension being the total order.
1.2. Desiderate of the Solution:
Since KRL cannot be used in multidimensional index
structures, new techniques need to be devised to prevent
phantoms in such data structures. The principal challenges
in developing a solution based on granular locking are:
Defining a set of lockable resource granules over the
multidimensional key space such that they (1) dynamically
adapt to key distribution (2) fully cover the entire
embedded space and (3) are fine enough to afford high
concurrency. The importance of these factors in the choice
of granules has been discussed in [9]. The lock granules
(i.e. key ranges) in KRL satisfy these 3 criteria.
Easy mapping of a given predicate onto a set of granules
that needs to be locked to scan the predicate. Subsequently,
the granular locks can be set or cleared as efficiently as
object locks using a standard lock manager (LM).
Handling overlap among granules effectively. This
problem does not arise in KRL since the key ranges are
always mutually disjoint. In multidimensional key space
partitioning, the set of granules defined may be, in GiST
terminology, “mutually consistent”. For example, there
may be spatial overlap among R-tree granules.
This complicates the locking protocol since a lock on a
granule may not provide an “exclusive coverage” on the
entire space covered by the granule. For correctness, the
granular locking protocols must guarantee that any two
conflicting operations will request conflicting locks on at
least one granule in common. This implies that at least one
of the conflicting operations must acquire locks on all
granules that overlap with its predicate while the other
must acquire conflicting locks on enough granules to fully
cover its predicate [5]. This leads to two alternative
strategies:
Overlap-for-Search and Cover-for-Insert Strategy (OSCI)
in which the searchers acquire shared mode locks on all
granules consistent with its search predicate whereas the
inserters, deleters and updators acquire IX locks on a
minimal set of granules sufficient to fully cover the object
being inserted, deleted or updated.
Cover-for-Search and Overlap-for-Insert Strategy (CSOI)
in which the searchers acquire shared mode locks on a
minimal set of granules sufficient to fully cover its search
predicate whereas the inserters, deleter’s and updater’s
acquire IX locks on all granules consistent with the object
being inserted, deleted or updated.

While the former strategy favors the insert and delete
operations by requiring them to do minimal tree traversal
and disfavors the search operation by requiring them to
traverse all consistent paths, the latter strategy does exactly
the reverse. Intermediate strategies are also possible. For
GL/GIiST, we choose the OSCI strategy in preference to the
rest. The OSCI strategy effectively does not impose any
additional overhead on any operation as far as tree traversal
is concerned since searchers in GiST anyway follow all
consistent paths. The CSOI strategy may be better for index
structures where inserters follow all overlapping paths and
searchers follow only enough paths to cover its predicate.
The R+-tree is an example of such an index structure [15].
We assume that the OSCI strategy is followed for all 1In
this paper, we use the term “granules” to mean lock units —
resources that are locked to insure isolation and not in the
sense of granules in “granule graph” of MGL [9]. This is
discussed in further detail in Section 4.1. discussions in the
rest of the paper.
Preventing Phantoms
e Table locking prevents phantoms; row locking does not
Predicate locking prevents phantoms
e A predicate describes a set of rows, some are in a table
and some are not
e Every SQL statement has an associated predicate
e When executing a statement, acquire a (read or write)
lock on the associated predicate
e Two predicate locks conflict if one is a write and there
exists a row (not necessarily in the table) that is
contained in both.

Terminology

In developing the algorithms, we assume, as in [12], that a
transaction may request the following types of operations
on GiST: Search, Insert, Delete, Read Single, Update
Single and Update Scan. In presenting the solution to the
phantom problem, we describe the lock requirements of
each of these and present the algorithms used to acquire the
necessary locks. The lock protocols assumes the presence
of a standard LM which supports all the MGL locks modes
(as shown in Table 1) as well as conditional and
unconditional lock options [16]. Furthermore, locks can be
held for different durations, namely, instant, short and
commit durations [16]. While describing the lock
requirements of various operations for phantom protection,
we assume the presence of some protocol for preserving the
physical consistency of the tree structure in presence of
concurrent operations. The lock protocol presented in this
paper guarantees phantom protection independent of the
specific algorithm used to preserve tree consistency. In our
implementation, we have combined the GL/GiST protocol
with the latching protocol proposed in [10]. We do not
describe the combined algorithms in this paper due to space
limitations but can be found in the longer version of this

paper [5].

2 RELATED RESEARCH AND MOTIVATION
In this section, we review the structure of the R-tree family,
discuss some limitations that affect R+-trees, survey major
concurrency control algorithms based on B-trees and R-
trees, and summarize the challenges inherent in applying
concurrency control to R+-trees.
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2.1 R-Tree Index Structure:

An R-tree [2] is a height-balanced tree similar to a B-tree
with index records in its leaf nodes containing pointers to
data objects Nodes correspond to disk pages If the index is
disk resident, and the structure is designed so that a spatial
search requires visiting only a small number of nodes The
index is completely dynamic; inserts and deletes can be
inter- mixed with searches and no periodic reorganization is
required.

2.2. R-Plus Tree:

We move now to formally describe the structure of R+ Tree
[3]. A leaf node is of the form (oil, RECT) where oil is an
object identifier and is used to refer to an object in the
database. RECT is used to describe the bounds of data
objects. For example, in a 2-dimensional space, an entry
RECT will be of the form (Xlow,Xhigh,Ylow,Yhigh)
which represents the coordinates of the lower-left and
upper-right corner of the rectangle. An inter- mediate node
is of the form where p is a pointer to a lower level node of
the tree and RECT is a representation of the rectangle that
encloses.

Fig 2.c Rectangles organized on to R Plus Tree
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Fig 2.d. R Plus Tree for Rectangles of Fig 2.c.

2.3 Concurrency Controls:
Several concurrency control algorithms have been proposed
to support concurrent operations on multidimensional index
structures, and they can be categorized into lock-coupling-
based and link-based algorithms. The lock coupling- based
algorithms [20], [21] release the lock on the current node
only when the next node to be visited has been locked
while processing search operations. During node splitting
and MBR updating, these approaches must hold multiple
locks on several nodes simultaneously, which may
deteriorate the system throughput.
The link-based algorithms [29], [30], [31], [32], [26] were
proposed to reduce the number of locks required by lock
coupling- based algorithms. These methods lock one node
most of the time during search operations, only employing
lock coupling when splitting a node or propagating MBR
changes. The link-based approach requires all nodes at the
same level be linked together with right or bidirectional
links. This method reaches high concurrency by using only
one lock simultaneously for most operations on the B-tree.
The link-based approach cannot be used directly in
multidimensional data access methods as there is no linear
ordering for multidimensional objects. To overcome this
problem, a right-link style algorithm (R-link tree) [30] has
been proposed to provide high concurrency control by
assigning logical sequence numbers (LSNs) on R-trees.
However, when a node splitting propagates and its MBR
updates, this algorithm still applies lock coupling. Also, in
this algorithm, additional storage is required to retain extra
information for the LSNs of associated child nodes. To
solve this extra storage problem, Concurrency on
Generalized Search Tree (CGIiST) [31] applies a global
sequence number, the Node Sequence Number (NSN). The
counter for NSN is incremented for each node split, with
the original node receiving the new value and the new
sibling node inheriting the previous NSN and its right-link
pointer. In order for the algorithm to work correctly,
multiple locks on two or more levels must be held by a
single insert operation, which increases the blocking time
for search operations.
Several mechanisms, such as top-down index region
modification (TDIM), copy-based concurrent update
(CCU), CCU with non blocking queries (CCUNQ) [29],
and partial lock coupling (PLC) [26], have been proposed
to improve the concurrency based on the above linking
techniques. However, the link-based approach with these
improvements is still not sufficient to provide phantom
update protection. Phantom updating refers to updates that
occur before the commitment, in the range of a search (or a
following update), and are not reflected in the results of
that search (or the following update). Concurrent data
access through multidimensional indexes introduces the
problem of protecting a query range from phantom updates.
The dynamic granular locking approach (DGL) has been
proposed to provide phantom update protection in the R-
tree [5] and GiST [5].The DGL method dynamically
partitions an embedded space into lockable granules that
adapt to the distribution of objects. The leaf nodes and
external granules of internal nodes are defined as lockable
granules. External granules are additional structures that
partition the non covered space in each internal node to
provide protection. According to the principles of granular
locking, each operation requests locks on sufficient
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granules such that any two conflicting operations will
request conflicting locks on at least one common granule.
Although the DGL approach provides phantom update
protection for multidimensional access methods and
granular locks can be efficiently implemented, the
complexity of DGL may impact the degree of concurrency.
2.4 Isolation Levels in Data Base Engine:
Transactions specify an isolation level that defines the
degree to which one transaction must be isolated from
resource or data modifications made by other transactions.
Isolation levels are described in terms of which
concurrency side-effects, such as dirty reads or phantom
reads, are allowed.
Transaction isolation levels control:
e Whether locks are taken when data is read, and what
type of locks are requested.
e How long the read locks are held.
e Whether a read operation referencing rows modified by
another transaction:
o Blocks until the exclusive lock on the row is freed.
o Retrieves the committed version of the row that existed
at the time the statement or transaction started.
o Reads the uncommitted data modification.
Choosing a transaction isolation level does not affect the
locks acquired to protect data modifications. A transaction
always gets an exclusive lock on any data it modifies, and
holds that lock until the transaction completes, regardless
of the isolation level set for that transaction. For read
operations, transaction isolation levels primarily define the
level of protection from the effects of modifications made
by other transactions.
A lower isolation level increases the ability of many users
to access data at the same time, but increases the number of
concurrency effects (such as dirty reads or lost updates)
users might encounter. Conversely, a higher isolation level
reduces the types of concurrency effects that users may
encounter, but requires more system resources and
increases the chances that one transaction will block
another. Choosing the appropriate isolation level depends
on balancing the data integrity requirements of the
application against the overhead of each isolation level.
The highest isolation level, serializable, guarantees that a
transaction will retrieve exactly the same data every time it
repeats a read operation, but it does this by performing a
level of locking that is likely to impact other users in multi-
user systems. The lowest isolation level, read uncommitted,
may retrieve data that has been modified but not committed
by other transactions. All of the concurrency side effects
can happen in read uncommitted, but there is no read
locking or versioning, so overhead is minimized.
Database Engine Isolation Levels:
The ISO standard defines the following isolation levels, all
of which are supported by the SQL Server Database
Engine:

e Read uncommitted (the lowest level where
transactions are isolated only enough to ensure that
physically corrupt data is not read)

e Read committed (Database Engine default level)

e Repeatable read

e Serializable (the highest level, where transactions
are completely isolated from one another).
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The amount of data that can be locked with the single
instance or groups of instances defines the granularity of
the lock. The types of granularity are illustrated here are:

= Page locking

= Cluster locking

= Class or table locking

= Object or instance locking

Page locking

Page locking (or page-level locking) concurrency control is
shown in the figure below. In this situation, all the data on a
specific page are locked. A page is a common unit of
storage in computer systems and is used by all types of
DBMSs. In this figure, each rectangle represents a page.
Locking for objects is on the left and page locking for
relational tuple’s is on the right. If the concept of pages is
new to you, just think of a page as a unit of space on the
disk where multiple data instances are stored.
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Cluster locking

Cluster locking or container locking for concurrency
control is illustrated in the figure below. In this form of
locking, all data clustered together (on a page or multiple
pages) will be locked simultaneously. This applies only to
clusters of objects in ODBMSs. Note that in this example,
the cluster of objects spans portions of three pages.
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Class or table locking

Class or table locking means that all instances of either a
class or table are locked, as is illustrated below. This shows
one form of concurrency control. Note the circle at the
lower left. It represents all instances of a class, regardless
of the page where they are stored.

~ - - Cluster locking

Size

Catalog fem

[

——  E—
—

o E

I
Color Swateh

- Product Tmage e ol —

[~ — [—

\ 4 —

i —
I—
I
I—
Class locking -- e
‘ allinstances ofa I
I
‘ ‘ class are locked —
4 Table locking - —

allinstance of a

table are locked

2022



N. Krishna Kumairi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2019-2024

Object or instance locking

Instance locking locks a single relational tuple in
an RDBMS or a single object in an ODBMS. This type of
concurrency control is illustrated below.
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3. EXPERIMENTAL SETUP:

The experiments [1] were conducted on a Pentium 4
desktop with 512 Mbytes memory, running a Java2
platform under windows XP. The implementations of the
R-tree, the R+-tree, and the ZR+-tree were all based on the
Java source package for R-tree obtained from the R-tree
portal [26]. The first set of experiments evaluated the
construction and query performance of the ZR+-tree. In
these experiments, different data sizes were selected to
construct the ZR+-trees, R-trees, and R+-trees. In
evaluating the query performance, /O cost is the
determining factor, because the query process on the ZR+-
tree does not introduce extra computation compared to the
R+-tree. The disk accesses of the point queries were
recorded by varying the number of rectangles.
Additionally, the standard deviations of the number of disk
accesses were calculated to compare the stability of the
ZR+-tree and the R+-tree. Consequently, queries with
different window sizes were executed on the constructed
trees in order to record the execution cost. From the
analysis of the algorithm given in the previous section, both
the point query and window query performances of ZR+-
trees are expected to be better than those of the R-trees. The
number of disk accesses in this set of experiments was
computed to be the average value for 1,000 random queries
in order to reduce the impact of uneven data distribution.
Throughput of Concurrency Control

The performance for concurrent query execution was
evaluated both for the R-tree with granular locking and the
ZR+-tree with the proposed GLIP protocol. In order to
compare these two multidimensional access frameworks,
two parameters, namely, concurrency level and write
probability were applied to simulate different application
environments on the three data sets. Here, concurrency
level is defined as the number of queries to be executed
simultaneously, and write probability describes how many
queries in the whole simultaneous query set are update
queries. The execution time measured in milliseconds was
used to represent the throughput of each of the approaches.
According to the algorithm analysis in the previous section,
the ZR+-tree with concurrency control should perform
better than the R-tree with granular locking when the write
probability is low. This performance gain comes from not
only the outstanding query performance of the ZR+-tree but

also the finer granules of the leaf nodes in the ZR+-tree.
The size of the queries executed was tunable in this set of
experiments. The data sets used in these experiments were
the same as those used in the query performance
experiments, except that the size of the synthetic data set
was reduced to 5,000 in order to assess the throughput in
relatively small data sets compared to the real data sets.

Fig 3.0 and Fig 3.1 shows the execution time costs for the
three data sets with a fixed concurrency level and changing
write probabilities when the query range is 1 percent of the
data space. The concurrency level was fixed at two levels
30 and 50 as representative levels, while the write
probability varied from 5 percent to 40 percent. The y-axis
in these figures shows the time taken to finish these
concurrent operations, and the x-axis indicates the portions
of update operations in all the concurrent operations in
terms of percentages. Both approaches degrade the
throughput when the write probability increases.
Comparing the performance from the different write
probabilities, GLIP on the ZR+-tree performs better than
granular locking on the R-tree when the write probability is
small. When the write probability increases, the throughput
of the concurrency control on the R-tree comes close to and
exceeds that of the ZR+-tree. Specifically, when the
concurrency level is 30, the throughput of the ZR+- tree is
better with a write probability lower than 30 percent in real
data sets. When the concurrency level is raised to 50, the
concurrency control on the ZR+-tree outperforms the R-
tree in cases where the write probability is less than 35
percent. From this set of figures, it can be concluded that in
reading predominant environments, GLIP on the ZR+-tree
provided better throughput than dynamic granular locking
on the Rtree, although this advantage tended to decrease as
the write probability increased.
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CONCLUSION

This paper proposes a new concurrency control protocol,
GLIP, with an improved spatial indexing approach, the
ZR+-tree. GLIP is the first concurrency control mechanism
designed specifically for the R+-tree and its variants. It
assures serializable isolation, consistency, and deadlock
free for indexing trees with object clipping. The ZR+-tree
segments the objects to ensure every fragment is fully
covered by a leaf node. This clipping-object design
provides a better indexing structure. Furthermore, several
structural limitations of the R+-tree are overcome in the
ZR+-tree by the use of a non-overlap clipping and a
clustering-based reinsert procedure. Experiments on tree
construction, query, and concurrent execution were
conducted on both real and synthetic data sets, and the
results validated the soundness and comprehensive nature
of the new design. In particular, the GLIP and the ZR+-tree
excel at range queries in search-dominant applications.
Extending GLIP and the ZR+-tree to perform spatial joins,
KNN-queries, and range aggregation offer further attractive
possibilities.
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